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This article uses latent structure analysis to model ordered category ratings by multiple experts on the appropriateness of indications 
for the medical procedure carotid endarterectomy. The statistical method used is a form of located latent class analysis, which 
combines elements of latent class and latent trait analysis. It assumes that treatment indications fall into distinct latent classes, with 
each latent class corresponding to a different level of appropriateness. The appropriateness rating of a treatment indication by a rater 
is assumed determined by the latent class membership of the indication, rating category thresholds of the rater, and random measurement 
error. The located latent class model has two alternative forms: a normal ogive form, which derives from the assumption of normally 
distributed measurement error, and a logistic approximation to the normal form. The approach has the following advantages for the 
analysis of ordered category ratings by multiple experts: ( 1 ) it assesses whether different raters base ratings on the same or different 
criteria; ( 2 )  it assesses rater bias-the tendency of some raters to make higher or lower ratings than others; ( 3 )  it characterizes rater 
differences in rating category definitions; ( 4 )  it provides theoretically based methods for combining the ratings of different raters; 
and ( 5 )  it provides a description of the distribution of the latent trait. The data examined are appropriateness ratings on 848 
indications for carotid endarterectomy made by nine medical experts. The located latent class approach provides unique insights 
concerning the data. It identifies what appears to be a set of clear nonindications for carotid endarterectomy, but a corresponding 
set of clear indications is not evident. The results indicate that all raters measured a common latent trait of treatment appropriateness, 
but that some measured the trait better than others. Rater differences in overall bias and rating category definitions are evident. Two 
methods are used to combine raters' ratings. One uses ratings to calculate a continuous appropriateness score for each indication. 
The other uses ratings to assign indications to discrete outcome categories, each corresponding to a specific level of appropriateness. 
The located latent class approach for ordered category measures has possible applications besides the analysis of expert ratings, such 
as item analysis. Potential extensions of the model are discussed. 
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I.INTRODUCTION 1986), who had panels of national experts rate the appro- 
priateness of several medical treatments. 

There is much recent concern about ensuring the appro- Because of space limitations, only a brief synopsis of sta- 
priateness of medical treatment. One proposed strategy for tistical methods for the analysis of multiple expert rating 
establishing treatment standards is to have expert panels re- 	 data with ordered categories is provided. More extensive dis- 
view and rate the appropriateness of various indications for 	 cussion of this literature was provided by Agresti ( 1992) and 
a given medical procedure. Uebersax ( 199 1, 1992). 

The use of multiple expert raters raises several important 
A version of the kappa coefficient to assess agreement on 

measurement issues. Do different raters have the same or ordered category ratings was presented by Cohen ( 1968).
different criteria for treatment appropriateness? Do some 	 Tanner and Young ( 1985) discussed log-linear models for 
raters tend to make higher or lower ratings than others? If 	 agreement with ordered categories; Agresti ( 1988) and Recker 
ordered category ratings are used, do different raters attach 

( 1989, 1990) described related methods based on Goodman's 
the same meanings to the rating categories? How should the 

( 1986) association models. Darroch and McCloud ( 1986)
ratings of different raters be combined? Analysis of panel 

examined quasi-symmetry agreement models, and Agresti 
rating data often focuses narrowly on whether or how much 	 and Lang ( 1993) discussed an approach that combines quasi- 
raters tend to agree and neglects many of these important 	 symmetry and latent class models. 
questions. 	 With dichotomous ratings, Darroch and McCloud's and 

This article uses latent structure methods to study ordered Agresti and Lang's models produce results equivalent to a 
category expert ratings on treatment appropriateness. We 	 special case of the present approach-the special case is equal 
specifically examine ratings for the carotid endarterectomy measurement error across raters and a logistic response 
procedure. In carotid endarterectomy, used to prevent stroke, function. Unlike the present approach, these other methods 
the surgeon inserts a catheter into the carotid artery and 	 do not permit the representation of rater differences in mea- 
manipulates it to remove obstructive plaque. Although this 	 surement error and do not provide a simple way to combine 
procedure is generally effective, there are concerns about 	 multiple ratings into a score that measures the trait of interest. 
possible side effects and overuse. The data come from a The present approach is an example of latent structure 
comprehensive study by Brook and colleagues (Park et al. 	 analysis (Lazarsfeld and Henry 1968) and contains elements 

of latent class analysis (Goodman 1974; Haberman 1979), 
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Rasch ( 1980) modeling. Latent class models for multiple and 
rater data have received increasing attention. Gelfand and 
Solomon ( 1975) , Walter and Irwig ( 1988), Espeland and r ~ j k c= r i l~ l~ j Ic2~kc3 .  ( 2 )  

Handelman ( 1989), and Uebersax and Grove ( 1990), The parameters are 
among others, have discussed such models for dichotomous 
ratings. Dawid and Skene ( 1979) and Dillon and Mulani 
( 1984) proposed similar models for unordered polytomous 
ratings, and Clogg ( 1979) considered simple latent class 
models for ordered category ratings. 

Uebersax ( 1988) and Uebersax and Grove ( 1989, 1993) 
discussed a latent distribution model for multiple rater or- 
dered category data. Quinn ( 1989) and Henkelman, Kay, 
and Bronskill ( 1990) derived similar approaches from signal 
detection theory. These models regard the characteristic that 
ratings assess as a continuous latent trait. But there are rea- 
sons why one may instead want to view the trait as having 
discrete levels. 

First, the trait may actually be discrete; for example, a 
disease with distinct stages. Second, some applications require 
classification of cases into specific outcome categories. Third, 
discrete latent trait models can avoid potentially restrictive 
distributional assumptions; for example, that the trait is nor- 
mally distributed. Finally, discrete models usually require 
less computation. 

The approach here draws on recent advances in the in- 
tegration of latent class and latent trait models (Dayton and 
Macready 1988; Formann 1985, 1992; Kelderman and 
Macready 1990; Lindsay, Clogg, and Grego 199 1 ; Mislevy 
and Verhelst 1990; Rost 1988). Rost's models are especially 
relevant, though they differ in some ways from the approach 
here. 

Rost's approach is based on the polytomous Rasch model, 
whereas the approach here uses the polytomous IRT model 
(Samejima 1969). Both approaches use located thresholds 
to define response probabilities. With the polytomous IRT 
model, response probabilities are determined by the pro- 
portions of a pdf that fall between successive thresholds. With 
the polytomous Rasch model, response probabilities are 
given by the probability of a case exceeding threshold t + 1 
given that it exceeds threshold t. For further discussion of 
both approaches, see Andrich ( 1978). 

Section 2 describes the analytic approach that is applied 
to the data in Section 3. Section 4 discusses implications for 
further research. 

2.  MODEL 

2.1 Latent Class Rating Model 

The reader will benefit from a basic knowledge of latent 
class analysis, such as that provided by Goodman ( 1974); 
see also McCutcheon ( 1987) for a less technical introduction. 

Let N cases be rated by R raters on a scale with I ordered 
categories. The general latent class rating model assumes C 
case subtypes, or latent classes. As given by Clogg ( 1979), 
the model with R = 3 raters is 

c 

1. unconditional joint probabilities, r o k  ( i ,  j ,  k = 1, . . . , 
I ) ,  the probabilities that a randomly sampled case is assigned 
rating category i by rater 1, category j by rater 2, and category 
k by rater 3 

2. latent class prevalences, r, ( c  = 1, . . . , C),  the prob- 
abilities that a randomly sampled case belongs to each latent 
class 

3. conditional joint probabilities, r o k l c  ( i ,  j ,  k = 1, . . . , 
I ;  c = 1, . . . ,C),  the conditional probabilities that a case is 
assigned categories i, j ,  and k, by raters 1, 2, and 3, given 
membership in latent class c 

4. conditional rating probabilities, rilcl, r,~,2, Tklc3  

( c  = 1, . . . ,C; i, j ,  k = 1, . . . ,I ) ,  where, for instance, rilcl 
is the probability of rater 1 assigning rating level i given a 
case belonging to latent class c. 

The many independent basic parameters-( C - 1 ) prev-
alences and R C ( I  - 1 ) conditional rating probabilities- 
complicate estimation. Clogg suggested simplifying con-
straints. For example, when I = C, one might require rl1 
-- . . .  = rclcrfor each r. Such constraints are arbitrary, 
however, and the requirement of equal numbers of latent 
classes and manifest categories is limiting. A more flexible 
and theoretically based method for parameter constraint is 
desirable. 

2.2 Located Latent Classes 

Let the latent trait that is the basis of ratings define a 
unidimensional continuum, and let I9 denote a given latent 
trait level. Also, let each rater r have thresholds T,, ( i  = 2, 
. . . , I) on this continuum. We define threshold riras the 
trait level above which rater r applies category i or higher. 

Each latent class is assumed to correspond to a true latent 
trait level PC; latent classes are numbered such that PI < /3* 
< . . . < PC. Because of measurement error, apparent trait 
levels for members of latent class c may vary from /3,. For 
rater r, measurement error is assumed normally distributed 
with variance a:,. 

Let a,,(@denote the cdf of apparent trait levels of latent 
class c for rater r .  The probability that a randomly observed 
member of the latent class will have an apparent trait level 
x, that exceeds rater r's threshold for rating level i is 

We leave details on a normal ogive model based on ( 3 )  
implicit. Instead, following Birnbaum (Lord and Novick 
1968, pp. 399-400), we replace GCr(I9) with a two-parameter 
logistic function, \kcr(19), which closely approximates the 
former and has desirable computational properties 

Pr[xc > ~ i r ]= 1 - Qcr(~ir), ( 4 )  

where 
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Figure 1. Located Latent Class Model. For each rater r ,  apparent trait 
levels of members of latent class c follow a normal pdf around true level 
p,. Logistic function Q , ( B )  approximates the apparent trait level cdf; 1 
- Q W ( ~ , )  estimates the probability that a member of latent class c exceeds 
T,,,rater r's threshold for category i. 

and a, is a measurement error parameter for rater r. With 
the -1.7 constant, ( 5 )  approximates a normal cdf with vari-
ance 1/ a ? .A special case of (5) assumes equal measurement 
error (EME) across raters; that is, a l  = . . . = aR = a. The 
logistic version of the located latent class model is illustrated 
in Figure 1. 

Note that, unlike the logistic latent class models of, for 
example, Formann (1985, 1992) and Rost (1988), the lo-
gisticmodel here is viewed as an approximation to the normal 
ogive model, which requires slightly more computation. 

Rater thresholds and logistic function parameters supply 
the conditional rating probabilities for Equation (2 ) .  Spe-
cifically, 

We refel to (5) and ( 6)  as the basic model. Identification 
requires two constraints on the combined set of PC,a , ,  and 
T , ,  parameters; also, only C - 1 prevalences need to be es-
timated, because Zc rc= 1. The total number of estimated 
parameters is, therefore, IR + 2C - 3. 

The parameters of the located latent class model quantify 
three important rater characteristics: bias, category widths, 
and rating precision. A rater's mean threshold provides an 
index of general bias-the tendency to make higher or lower 
ratings overall. The distance between adjacent thresholds 
corresponds to a category's width or definition for a rater. 

Let p ,  denote the correlation between cases' true and ap-
parent trait levels for rater r; we term this the latent corre-
lation. We define p ?  = c i / ( a i  + a$), where o: denotes the 
latent trait variance. Because 1 / a ?approximates a$, we can 
approximate pr with 

Because p :  reflects how much apparent trait levels are de-
termined by the latent trait rather than by measurement er-
ror, it provides an index of rating precision. 

Measurement error is interpretable as reflecting either 

random noise or a unique trait that influences the ratings of 
a particular rater. Latent correlations assess agreement or 
consensus among raters as their tendency to be influenced 
by a common latent trait-in other words, whether raters 
are measuring the same thing. This is conceptually different 
than traditional approaches to agreement, which focus more 
on whether raters tend to assign a case to the same rating 
category; in applications where manifest agreement is the 
main concern, other approaches should be considered. 

2.3 Some Submodels 

Adding restrictions to the basic model can reduce the 
number of estimated parameters. Restricted models also al-
low statistical tests of rater differences. 

We define 

71, = Ar + air ,  ( 8 )  

where A, is the mean of rater r's thresholds and 6 , ,  is the 
deviation of threshold T , ,  from A, (so that 2 , 6 , ,  = 0 ) .  One 
possibility is that category widths are the same across raters, 
but that raters differ on overall bias. To accommodate this 
we impose on ( 8 )  the requirement = = = 6 ,  for 
i = 2, . . . ,I.We term the result the simple bias (SB) model. 
These constraints eliminate the need to estimate (R  - 1 ) ( I  
- 2)  parameters, reducing the number of estimated param-
eters to I + 2(R + C )  - 5. 

Another restriction requires Al = = AR = A; that is, 
equal bias across raters. Adding this restriction to the SB 
model requires thresholds to be equal across raters, so we 
term the result the identical thresholds ( IT)  model. 

The SB model is nested within the basic model, and the 
IT model is nested within the SB model. One can thus sta-
tistically assess rater differences in category widths by com-
paring the basic and SB models and assess rater differences 
in bias by comparing the SB and IT models. 

The restricted models here are similar to those discussed 
by Muraki ( 1990)in the context of rating scale analysis with 
ordered category measures. Other models and submodels 
can be created with various parameter constraints. For ex-
ample, one might require constant or symmetrical category 
widths within raters (see Tanner and Young 1985 for related 
discussion 1. 

2.4 Estimation 

LetLlk denote the observed frequency of cases with rating 
pattern ( i ,j ,  k) .  We assume the standard multinomial sam-
pling model. The log-likelihood ( L )  of observed results is L 
= 2 2 2 f ; ,kln(~i jk) ,where riikis obtained from Equations 
( 1 ) and ( 2 )  and the located latent class model. 

Maximum likelihood estimates (MLE's) are easily ob-
tained with numerical optimization algorithms. For the 
analyses here a direct search routine (Chandler 1969) was 
used. Simplex or gradient-based algorithms probably would 
also be suitable. Starting values are not crucial but should 
be reasonable-for example, starting values for successive 
thresholds should be in ascending order. Several runs with 
different starting values are recommended .to avoid local 
maximum solutions. A FORTRAN program that imple-
ments the approach is available from the author. 
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For a unique solution, the number of estimated parameters 
must be less than or equal to IR - 1. For complete assurance 
of local identifiability, one can evaluate the rank of the ob- 
served information matrix ( - 1 times the matrix of second 
derivatives of L with respect to model parameters), where 
derivatives are approximated with finite differences. Asymp- 
totic estimated standard errors of parameter estimates are 
obtained as the square roots of the diagonal elements of the 
inverse of the observed information matrix. 

Identifiability does not generally pose an obstacle to the 
approach's effective use. If necessary, one can usually add 
plausible constraints to achieve identification. Certain in- 
stances of nonidentifiability, though, are noteworthy. 

With dichotomous ratings and the EME assumption, 
model (5) is equivalent to a Rasch model with a discrete 
trait distribution. Thus results of Lindsay, Clogg, and Grego 
( 1991 ) apply. Specifically, C I (R + 1) /2  is required for 
identification of all parameters; otherwise, a and rirparam-
eters are identified but 0,and rcparameters are not. Similar 
partial identifiability appears to exist with I = 4, R = 2, C 
= 4, and the EME assumption. The phenomenon may occur 
for other designs as well and needs further study. 

With R = 2 raters in general, individual a, terms cannot 
be estimated; the situation is analogous to factor analysis of 
two continuous measures, where both will emerge equally 
correlated with the common factor. Finally, a, parameters 
may sometimes tend to infinity. One should therefore impose 
an upper limit (e.g., 10) on their value. More complex ways 
of handling this were discussed by Bock, Gibbons, and Mu- 
raki (1988). 

2.5 Case Classification and Scoring 

Parameter estimates can be used to assign each case to its 
most likely latent class. Recalling earlier definitions, we now 
define joint probability rokc= We also define the r,riiklc. 
conditional probability of membership in latent class c given 
rating pattern ( i ,  j ,  k) as rClok~ ~We can then ~= ~ ~ / 

assign a case to the latent class for which rCl1 ,k  is highest, or, 
with the same result, to the latent class for which r l i k c  is 
highest. 

In some applications it is useful to assign cases a latent 
trait score. As described by Clogg ( 1988), a simple method 
for this is to assign a case n with ratings ( i ,j ,  k) the score 

where kClokand fi, are the MLE's of i ~ and~ 0 , .  ~ ~ k 

3. 	 EXPERT RATINGS ON APPROPRIATENESS OF 
CAROTID ENDARTERECTOMY 

Brook and colleagues (Park et al. 1986) had nine medical 
experts rate a large number of possible indications for carotid 
endarterectomy on a scale of 1 for highly inappropriate to 
9 for highly appropriate. We consider results for 848 indi- 
cations rated by all raters. 

If one is willing to view the data as interval level, then 
they can be analyzed with traditional methods. For example, 
correlations between each rater's ratings and the sum of all 
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other raters' standardized ratings, similar to item-total cor-
relations in classical test theory, can be calculated to estimate 
rater precision. An alternative would be to factor analyze 
ratings and estimate raters' precision by their correlations 
with the first common factor. With the latter approach, rater- 
factor correlations are closely analogous to p, terms. Rater 
bias could also be assessed by treating ratings as repeated 
measures in an analysis of variance (ANOVA). 

The problem is that use of integer labels for rating cate- 
gories does not ensure that raters actually view them as 
equally spaced. Traditional methods can considerably un- 
derestimate rating precision because unequal interval widths 
are simply absorbed as measurement error. 

Analysis of the data can be divided into three steps: ( 1) 
model choice, (2 )  parameter interpretation, and (3 )  com- 
bination of ratings to derive summary measures. 

3.1 Model Choice 

To facilitate analysis the ratings were collapsed to five rat- 
ing levels by reassigning levels ( 1, 2)  = 1, (3, 4 )  = 2, 5 = 3, 
(6, 7 ) = 4, and ( 8, 9 ) = 5. A further reason for doing this is 
because one rater avoided the even-numbered rating cate- 
gories. 

To verify the assumption of a unidimensional latent trait, 
the polychoric correlation matrix between pairs of raters was 
constructed using PRELIS (Joreskog and Sorbom 1988) and 
analyzed by principal components. The first eigenvalue was 
7.41, and all remaining eigenvalues were less than .43. The 
dominant first eigenvalue supports the assumption of a uni- 
dimensional latent trait. 

The extremely sparse data invalidates standard likelihood 
ratio chi-squared (G2)  and Pearson chi-squared ( x 2 )  model 
fit tests. For initial examination of the data, the recoded 
ratings were therefore dichotomized by assigning levels ( 1, 
2)  = 1 and (3, 4, 5 ) = 2. Even with this recoding the data 
are somewhat sparse, but they provide a better basis for as- 
i ? ~ ~ ~ ~ 
sessing model fit and potentially valid difference G2 tests. 

Several models are considered (see Table 1). Models H 1 
and H2 are the basic model with three and four latent classes. 
Models H2a and H2b add to H2 the EME and IT restrictions. 
Note that with dichtomous ratings the simple bias model is 
the same as the basic model, because there is only one 
threshold per rater. 

H2 fits noticeably better than HI,  while adding only two 
parameters. H2 fits the data with x2= 527.58, 488 df, and 
x 2 / d f  = 1.08, which suggests that our basic approach is 

Table 1. Results of Some Models and Submodels Applied to 
Dichotomized Ratings on Appropriateness of Carotid Endarterectomy 

Model Description G2 X 2  df 

H 1 3 latent classes 393.82 562.10 490 
H2 
H2a 
H2b 

4 latent classes 
H2 + EME 
H2 + I T '  

324.96 
420.78 

1131.46 

527.58 
767.39 

2588.92 

488 
496 
496 

NOTE: Constraints abbreviated as follows: EME = equal measurement error across raters; IT 
= identical thresholds model. 

One measurement error parameter tended to infinity and was fixed at 10; the df reported for 
the model view the parameter as estimated. 
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Table 2. Results of Some Models and Submodels Applied to Five-Level Ratings 
on Appropriateness of Carotid Endarterectomy 

Number of Schwarz 
Model Description parameters G AIC index 

M 1 5 latent classes 52 4082.44 1 1652 1 1898 
M la 
M l b  
M lc 

M I  + ELC 
M I  + ELC + SB 
M I  + ELC + SB t EME 

49 
25 
17 

4129.08 
4484.69 
471 1.31 

1 1692 
12000 
12211 

11925 
12119 
12291 

M2 7 latent classes + ELC 51 4052.98 11 620 11862 

NOTE: Constraints abbreviated as followsELC = equally spaced latent classes. SB = simple bias model, EME = equal measurement error across 
raters. 

reasonable. Results of other models show that adding latent MLE's of PCand x, parameters for M 1 a. Note that the PC 
classes beyond four improves fit only slightly. 

The difference G2 for the H2a-H2 comparison is 420.78 
- 324.96 = 95.81 with 496 - 488 = 8 df. Therefore, rater 
differences in measurement error appear statistically signif- 
icant. The H2b-H2 comparison tests whether raters have 
equal bias. The difference G~ for this comparison is 806.50 
with 8 df, indicating clear bias differences. 

Table 2 shows the results of several models applied to the 
five-level ratings. One unrestricted model ( M  1 ) and several 
restricted models (Mla-Mlc, M2) are shown. The EME 
and SB constraints have already been discussed. The ELC 
restriction assumes equally spaced latent classes; that is, a 
constant distance between successive 0, values. This simpli- 
fication reduces the number of estimated parameters. 

The Akaike information criterion (AIC) and Schwarz in- 
dex, model selection criteria, are potentially helpful with 
sparse data (Sclove 1987). The AIC is calculated as -2 L 
+ 2p, where L is the log-likelihood and p is the number of 
estimated parameters. The Schwarz index is calculated as 
-2L + ln(N)p, where N is the sample size. For both, smaller 
values indicate more preferred models. 

M2 is the statistically preferred model of Table 2 and many 
others tested, containing from three to ten latent classes. But 
many of the results of M2 are closely approximated with the 
simpler models, so we consider some of these also. 

3.2 Parameter Interpretation 

L~~~~~~~~i~ ~ i ~ ~ ~ i b ~ ~ i ~ ~ ,  F~~these data, latent ,-lasses 
could be viewed either as reflecting underlying conceptual 
categories that correspond to various levels of treatment ap- 
propriateness or as providing a discrete approximation to a 
continuous trait of appropriateness. The ELC assumption is 
more defensible if one adopts the second view. Table 3 shows 

Table 3. Latent Class Locations and Prevalence Estimates 
for Model M l a  

Latent class Location parameter Prevalence 
(c) (PJ * (rJ 

1 -3.00 ,408 (.025) 
2 -1.50 .I88 (.022) 
3 .OO ,217 (.017) 
4 1.50 ,114 (.013) 
5 3.00 ,073 (.010) 

NOTE: Standard errors in parentheses. 
Parameters fixed. 

parameters are fixed to satisfy the ELC assumption and sup- 
ply the constraints for identification. 

A bimodal latent trait distribution, very clear with M2 
and also seen with M la  in Table 3, suggests that indications 
may be a mixture of two types: a set of clearly inappropriate 
indications and a set of indications with varying appropri- 
ateness. This has practical implications for setting treatment 
guidelines with expert panels, because it suggests that many 
indications can be unequivocally determined inappropriate. 
A corresponding group of clearly appropriate indications, 
however, is not apparent. 

The bimodal distribution is also seen with M 1 b and M 1 c. 
With MI,  x, values are not bimodal, but PI is markedly 
separated from P2- P5. One would, therefore, draw the same 
conclusion of a distinct group of clear nonindications. 

Latent Correlations. Table 4 shows a, and p: values for 
M 1. Nearly identical estimates are obtained with M2. The 
p: values are reasonably high overall, so that raters appear 
to be measuring a common latent trait. Some differences, 
though, are apparent, with Raters 4, 8, and 9 having lower 
values. As noted in connection with Table 1, rater differences 
in p: appear significant from the H2a-H2 comparison. 

Latent correlations are slightly lower for Models M 1 a- 
M 1 c. This is presumably because departure of the data from 
the more rigid assumptions of simpler models increases es- 
timates of measurement error. 

Rater Bias. Bias estimates are little affected by model 
choice; for all pairs of models in Table 2, bias estimates of 

Table 4.  Measurement Error Parameters (ad 
and Latent Correlations ( p a  for Model M1 

Rater (r) 01, P; 

Mean 

NOTE: Standard errors in parentheses 



426 Journal of the American Statistical Association, June 1993 

raters correlate .99 or above. Table 5 shows A, estimates and 
their standard errors for Model M lb. Model H2 produces 
similar bias estimates, and, as already noted, the H2b-H2 
comparison indicates statistically significant bias differences 
overall. 

The dichotomized ratings also help address the question 
of which pairs of raters differ significantly.Follow-up analyses 
examined this, using H2 as the baseline model and then 
requiring A, to be equal for pairs of raters. Bias differences 
for all but 7 of the 36 rater pairs were significant at the p 
I.05136 level; the nonsignificant differences were for pairs 
of raters in the set (4, 6 ,  8, 9 } and for Raters 1 and 5. 

Category Widths. Threshold estimates for M 1, M 1a, and 
M2 are very similar. Rater differences in category widths are 
evident in Figure 2, which shows the estimates for M2. 

A comparison of Raters 8 and 9 is illustrative. For Rater 
9 the middle categories, especially category 2, are narrower 
and categories 1 and 5 are wider; thus Rater 9's judgments 
appear more polarized. Graphical feedback similar to Figure 
2 can help raters avoid overly wide or overly narrow category 
definitions. 

3.3 Combining Ratings 

With the method described in Section 2.5, indications can 
be assigned to the most probable latent class. For MI the 
proportions of indications assigned to latent classes 1-5 are 
.41, .21, .19, . l l ,  and .08. 

Alternatively, (9)can be used to measure each indication's 
appropriateness. Resulting scores are very consistent across 
models; for any pair of models in Table 2, they correlate .99 
or above. 

A related question is whether some indications are unscal-
able (Dayton and Macready 1980; Goodman 1975)-that 
is, whether they obtain a markedly inconsistent pattern of 
ratings. Such cases may require different treatment. For ex-
ample, raters might discuss them to identify reasons for dis-
agreement. 

One way to examine this is to add a latent class c = 0, 
where -ir, lo r  = 1 / I  for i = 1, . . . ,I and r = 1, . . . ,R .  When 
this is done with M la, for example, the estimated prevalence 
of the unscalable latent class is 0; therefore, no indications 
are assigned to this class. But one might modify the procedure 
to assign an indication to the latent class for which ailklcis 
highest. When this is done, five indications are assigned to 
the unscalable class. 

Table 5. Rater Bias Estimates for Model M l  b 
(Simple Bias Model) 

Rater (r) A, 

NOTE: Standard errors in parentheses. 

Rater 1 
* 

* 
Rater 2 t 

Rater 3 
* 

* 
Rater 4 

Rater 5 
* 

Rater 6 

Rater 7 
* 

Rater 8 

Rater 9 
* 

-3 -2 -1 0 1 2 3 
Latenttrait level 

Figure 2. Estimated ThresholdLocations for Model M2 of Table2. The 
vertical lines show successive rating category thresholds for each rater. 
The asterisks show mean thresholds. 

4. DISCUSSION 

It is of some interest that restricted models with fewer 
parameters can accurately reproduce many results of the ba-
sic model. Models with the ELC and SB restrictions appear 
more than adequate to estimate latent trait scores and char-
acterize tendencies of some raters to make higher or lower 
ratings, but possibly not to accurately estimate latent cor-
relations. 

Several extensions of the present approach appear possible. 
One would be to consider multiple latent trait dimensions 
that raters weight differently. Multidimensional latent trait 
models described by Bock and Aitkin ( 1981) and Bock et 
al. ( 1988) potentially could be adapted for this. 

We have assumed complete data. In some applications, 
however, each rater is assigned only a subset of cases to rate. 
The approach here can be easily adapted to handle this sit-
uation. This involves a slight modification of the likelihood 
equation so that it considers only nonmissing ratings. 

Panel rating studies sometimes use a large number of rat-
ers. In such cases it may be useful to model the distribution 
of certain parameters (e.g., A with the simple bias model or 
a )  rather than estimate values for each rater. 

The statistical model used here has several possible ap-
plications beyond the analysis of expert ratings, such as item 
analysis and survey data analysis. 

[Received November 1990. Revised dlcgilst 1992.1 
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